DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES

Apple II Console and Keyboard Tools (8/85)

DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTES

7z 88eg

Page 3

Table of Contents

Foreword
About This Document 5
Console Driver 5
Standard User Input Routine 5
About the Disks 6
Pascal 6
Assembly Language 7
BASIC 7
Hardware Requirements 8
Chapter 1l: Console Driver
Overview 9
The Screen 9
The Viewport 19
Viewport Specification 19
The Cursor 11
Cursor Position 11
Cursor Movement 11
Text Modes 12
Fill Character 12
MouseText ' 13
Normal and Inverse 13
Screen Control Codes 13
No Operation 14
Set Viewport 14
Save and Reset Viewport 15
Restore Viewport 16
Clear Viewport 16
Clear from Beginning of Viewport 16
Clear to End of Viewport 16
Clear Line 16
Clear from Beginning of Line 16
Clear to End of Line 17
Cursor Movement 17
Home Cursor 17

Move Cursor Left 17

Page 4

Move Cursor Right
Move Cursor Up
Move Cursor Down (Line Feed)
Return Cursor (Carriage Return)
Scroll Up
Scroll Down
Horizontal Position
Vertical Position
Absolute Position
Normal Text
Inverse Text
MouseText On
MouseText Off
Horizontal Shift
Space Expansion
Sound the Bell

Displayable Characters
MouseText

Language Interfaces
Pascal
BASIC
Assembly Language

Chapter 2: Standard User Input Routine

Overview
Why Standardization Is Needed
Overview of the User Input Routine
Customization and Advanced Uses
Terminating the UIR
Information Block
Format of the Information Block
Information Block Default Values
General Information Section
Termination Information Section
Internal Information Section
Language Interfaces
Pascal
BASIC
Assembly Language

18
18
18
18
18
18
19
19
19
29
29
29
29
29
21
21
21
22
22
22
26
31

37
37
37
38
39
39
49
42
43
45
46
47
48
52
55

Table of Contents

Page 5

Foreword

About This Document

Console Driver

The Console Driver is a version of the Apple III Console Driver, adapted
to the Apple IIe and IIc. The Console Driver supplies a simple and
consistent interface to a set of display format and control procedures in
a relatively small and fast package. Both display and control commands
are sent to the driver in the same way, allowing developers to build a
set of data structures that contain both display and control information.
The Console Driver is described in Chapter 1.

Standard User Input Routine
Apple Computer has published several documents encouraging standard
design, including how an Apple II input routine should look and behave.
To help software developers to create programs that are consistent in
terms of user interface, Apple is making available a Standard User Input
Routine (UIR). It incorporates the standards adopted by Apple and is
available for three environments: '

- Apple II Pascal

- Applesoft BASIC

= Apple II Assembler

The User Input Routine is described in Chapter 2.

Page 6 - : Foreword
About the Disks

This package contains three disks, one for each of the languages.
Each disk contains the Console Driver and the Standard User Input
Routine.

Note: Because the Console Driver makes the User Input
Routine more efficient, Apple recommends that the User Input
Routine and the Console Driver be used together. The
Assembler and BASIC versions of the UIR can be used without
the Console Driver—special versions of the UIRs can be
ordered from Apple Technical Support. Unlike the
UIR~-Console Driver combinations, these standalone UIRs work
with both 40~ and 8f-column displays.

Each of the disks contains a demonstration program that runs when the
disk is started up. It lets you specify several parameters, then runs
the User Input Routine. Except for field width, which has no default
value, you can just press RETURN instead of specifying your own values.
While the demonstration program is running, you can press ESC to restart
the demounstration.

Pascal

If your application program is written in Pascal (Pascal 1.3 or the 128K
version of Pascal 1.2), use the Pascal version of the User Input Routine
and Console Driver. The Pascal disk (volume name /PASCON) contains
eleven files:

SYSTEM.LIBRARY

SYSTEM.MISCINFO

SYSTEM.ATTACH

SYSTEM.APPLE

SYSTEM.PASCAL

SYSTEM.STAR.LIB

ATTACH.DRIVERS

ATTACH.DATA -

INPUT.INFO.TEXT (text of Information Block)
DEMO .TEXT

SYSTEM.STARTUP (the startup demonstration program)

About the Disks : Page 7

Assembly Language

The routines on these disks can be used in assembly-language application
programs or called from BASIC programs. The disk, volume name /ASMCON,
contains ten files, including both a relocatable and an absolute version.

PRODOS

BASIC.SYSTEM .

CONUIR.REL (relocatable version of Console Driver/UIR)

CONUIR.OBJ (absolute version)

RELO.DOC.TEXT (tells how to use RELOCATOR)

RELO.OBJ .

RELOCATOR (creates CONUIR.OBJ from CONUIR.REL at address you choose)
ASSEM.INTER

ASSEM.INTER.D

TARTUP (demonstration program)

To use RELOCATOR, run RELOCATOR. Then, in response to prompts, answer
- CONUIR.REL
~ Saddress

- CONUIR.OBJ

BASIC

The BASIC version of the UIR is relocatable. The disk, volume name
/BASCON, contains eight files:

PRODOS

BASIC.SYSTEM

CONUIR.REL (User Input Routine plus Console Driver)
CONDAMP.REL (the ampersand package)

RBOOT

RLOAD

RELEASE

STARTUP (the demonstration program)

Page 8 » Foreword
Hardware Requirements

To use this product, you need either
- an Apple IIc, or

- an Apple IIe with an 8f=-column card.

Page 9

Chapter 1

The Console Driver

Overview

The Console Driver described here is a version of the Apple III Comsole
Driver, adapted to the Apple IIe and IIc. The Console Driver can serve
as a low level tool for the implementation of different styles of human
interface. Once the Console Driver is used, all subsequent screen
output should come from the Console Driver.

Unlike with the typical programming interface, you don't have to make a
sequence of calls to set up for text to be displayed-—it can be done
with one call to the Console Driver. This simplifies the programming
of the human interface. Information used to format the text can be
imbedded in the text itself.

The driver supports a form of screen structure known as a viewport, a
rectangular portion of the screen where all console functions take

place. Once a viewport is established, any future text display is
within the viewport. All text outside the viewport is protected.

The Screen

The screen consists of
= 8P columns of text, numbered (left to right) 9 to 79
= 24 lines of text, numbered (top to bottom) P to 23

The upper left corner is column P, line § (abbreviated D,0).

Page 10 , Chapter 1: The Console Driver

The Viewport

The viewport is a rectangular portion of the screen where all current
text is displayed. Portions of the screen outside the viewport are not
affected by either format or display commands.

The Console Driver maintains an invisible cursor, which represents the
current location at which a displayable character will be placed. The
position of this cursor is specified by the two variables CH and cv,
described 'later in this chapter. The default is 9,9 (upper-left
corner) .

When the Console Driver is first used, the viewport defaults to the
whole screen. You can set the viewport by a special control and four
parameter bytes which specify the upper-left and lower-right cormers of
the viewport. All console functions then take place within the new
viewport.

The current viewport specifications can be saved and the viewport can
then be set to the specifications of the previously saved viewport.
You can then return to rhe original viewport settings with another
command.

Viewport Specification

Six variables specify the top, bottom, left, and right edge of the
viewport, as well as its width (in columns) and its length (in lines).
The default viewport is the entire screen. The variables, together
with their default values, are

Variable Definition Default
WNDTOP top line)
WNDBOT bottom line 23
WNDLFT left column p
WNDRGT right column 79
WNDWTH width in columns 89

WNDLEN ' length in lines 24

The Cursor Page 11
The Cursor

This section describes how the cursor's position and movement are
specified.
Cursor Position
The current’cursor position is maintained in two variables:
= CH (current horizontal position)
= CV (current vertical position)

When the Console Driver is first used, both values are set to zero,
signifying the upper-left corner of the screen.

The values of CH and CV represent the absolute screen coordinates
(actual column and line number) and are not relative to the current
viewport.

Cursor Movement

Five flags direct the Console Driver how to move the cursor within the

viewport. 1In all five cases, the default value is 1 (TRUE). If set to
zero, they are FALSE.

CONLFD (Line Feed)

When CONLFD is true, the Console Driver automatically performs a line
feed (control code 1P decimal, $PA hex) after every carriage return (13
decimal or $PD hex). When it is false, no automatic line feed is
performed. You can force a line feed by sending a line feed character.

CONADV (Advance)

When CONADV is true, the cursor advances one space to the right after
each display character is placed on the screen. When it is false, the
cursor does not advance after each character, but remains in the same
position. In this case, you must explicitly move the cursor by sending
a Move Cursor Right control (P9 decimal or $99 hex).

CONWRAP (Wrap)

When CONWRAP is true, an attempt to move the cursor beyond the right
(or left) edge of the viewport causes the cursor to be placed at the
opposite edge of the next (or previous) line of the viewport. When it

Page 12 Chapter 1: The Comnsole Driver

is false, the cursor remains at the edge of the viewport on the current
line. To move the cursor to the next line, send a Move Cursor Down (1p
decimal, $PA hex). To move the cursor to the previous line, send a
Move Cursor Up (1l decimal, $PB hex). Follow these by a Return Cursor
(13 decimal, $PD hex) to move the cursor to the beginning of a line.

CONSCRL (Scroll)

When CONSCRL is true, an attempt to move the cursor beyond the top or

bottom line of the viewport causes the contents of the viewport to be

scrolled either down or up. The cursor moves to the beginning of the

new top or bottom line. If it is false, the cursor remains at the top
or bottom of the viewport.

DLEFLAG (Space Expansion)

When DLEFLAG is true, DLEs (16 decimal, $19 hex) are interpreted as
space expansion controls with a following parameter byte. (See Screen
Control Codes, later in this chapter.) If it is false, they are
ignored. This is used to support Apple II Pascal text files. For
other uses, set this flag to P (false). :

Text Modes

You can determine the fill character, whether MouseText is used, and
whether text is displayed in normal or inverse mode.

Fill Character

The fill character is the character used to clear the contents of the
viewport. The default value is a space (32 decimal, $29 hex). Its
value is in the status block variable CONFILL. Due to the Apple II
character mapping, the actual binary value of the fill character is

- $PAD hex (160 decimal) for a normal space character, or

- $2P hex (32 decimal) for an inverse space character.

Text Modes Page 13

MouseText

The MOUSE flag specifies whether the Console Driver displays MouseText
characters. The default is FALSE. If MOUSE is true, characters in the
range $4P to $5F (64 to 95 decimal) are mapped into the MouseText
character set. Control codes are processed as is.

Normal and Inverse

The CONVID flag determines whether text is displayed 'in normal or
inverse mode. CONVID is set via two control codes (Set Normal Text and
Set Inverse Text), described later in this chapter. If CONVID is $8¢
(128 decimal), text is normal. If CONVID is @, text is inverse. The
default value is NORMAL.

Screen Control Codes

This section summarizes the 29 screen control codes. These control
codes are numbered $PP through $1F (P9 through 31 decimal), except that
control codes $§5, $P6, and $#9 are undefined and, if used, are
ignored. The table on the next page lists them in numerical order.

The detailed descriptions that follow the table are in functional
sequence, rather than numerical order.

Page 14 Chapter 1: The Console Driver

hex decimal Control Code

$99 99 no operation

$P1 pl1 save and reset viewport

$02 p2 set viewport

$93 93 clear from beginning of line
394 04 restore viewport

$97 p7 sound the bell

398 98 move cursor left

S$PA 19 move cursor down (line feed)
$PB 11 clear to end of viewport

$pC 12 clear viewport

$PD 13 return cursor (carriage return)
$OE 14 normal text

$PF 15 inverse text

$1p 16 space expansion

$11 17 horizontal shift

$§12 18 vertical position

$13 19 clear from beginning of viewport
$14 29 horizontal position

§15 21 cursor movement

$16 22 scroll down

$17 23 scroll up

$18 24 MouseText off

819 25 home cursor

$1A 26 clear line

$1B 27 MouseText on

$1C 28 move cursor right

$1D 29 clear to end of line

S1E 39 absolute position

SIF 31 move cCursor up

No Operation
control code: $PP (decimal 9p)

This control code has no effect and is ignored.

Set Viewport

control code: $02 (decimal 92)

Sets the boundaries of the viewport. It requires all four of its
parameter bytes (if any is missing, the control code is ignored). The
four parameters specify the absolute coordinates for the upper-left and

lower-right cormers of the viewport, and must appear in this order:

l. upper-left cormer X (or column) value

Screen Control Codes Page 15

2. upper-left corner Y (or line) value

3. 1lower-right corner X (or column) value

4. lower-right corner Y (or line) value
This control does not affect cursor movement, normal/inverse text mode,
nor the MouseText setting. It does not save the current viewport (see

Save and Reset Viewport). The cursor is placed in the upper-left
corner of the new viewport.

Validity Checking

The parameters are checked for validity before the viewport values are
set. The rules are

= Any parameter byte greater than 127 is negative (because bit 7
is set), causing this command to be ignored.

- If the X coordinate of the upper—-left or lower-right corner is
greater than 79, it is set to 79.

= 1If the Y coordinate of the upper-left or lower-right corner is
greater than 23, it is set to 23,

- The X-coordinate of the upper-left corner is used for WNDLFT.
- The Y-coordinate of the upper-left cormer is used for WNDTOP.

- The X-coordinate of the lower-right cormer, if greater than
WNDLFT, is used for WNDRGT, else this command is ignored.

= The Y-coordinate of the lower-right corner, if greater than
WNDTOP, is used for WNDBOT, else this command is ignored.,

= If for any reason the command is ignored, it does not change
the current viewport settings.

Save and Reset Viewport
control code: $Pp1 (decimal p1)

Saves the current settings of the viewport: its coordinates, cursor
position, cursor motion controls, mousetext, and normal/inverse
setting. The viewport is then set to the default values of the full
screen. Only one level of save is allowed--saving a second viewport
erases any information for a previously-saved viewport.

Page 16 Chapter 1: The Console Driver

Restore Viewport

control code: $P4 (decimal §4)

Restores the viewport to the values of the most recently saved
viewport. If no viewport has been saved, the values are set to the
default values for the whole screen. (See Save and Reset Viewport.)
Clear Viewport

control code: $OC (decimal 12)

Moves the cursor to the upper-left cormer of the viewport and then
clears the viewport by setting the contents to the current fill
character.

Clear from Begimming of Viewport

control code: $13 (decimal 19)

Clears the viewport from position #, # through the cursor. The cursor
does not move.

Clear to End of Viewport

control code: $PB (decimal 11)

Clears the contents of the viewport, from the current cursor position
to the end of the cursor line, and all lines below the cursor. The
cursor does not move.

Clear Line

control code: $1A (decimal 26)

Moves the cursor to the beginning of the current line and clears the
entire line.

Clear from Beginning of Line

control code: $@3 (decimal 93)

Clears the current line, from the beginning of the line through the
current cursor position in that line.

Screen Control Codes Page 17

Clear to End of Line
control code: $1D (decimal 29)

Clears the current line, starting from and including the current cursor
position in the line. The cursor does not move. :

Cursor Movement
control code: $15 (decimal‘Zl)

This control code and its parameter set the cursor movement controls as
specified by the parameter. The parameter is a single-byte value, with
only the lower five bits significant. The upper three bits are to be
set to zero. A zero resets the control; a one sets it. If the
parameter does not exist, or the upper three bits are non-zero, the
command is ignored. (See also The Cursor, earlier in this chapter.)

Bit Control

Bit 9 advance

Bit 1 Line Feed

Bit 2 Wrap

Bit 3 Scroll

Bit 4 DLE Space Expansion

Home Cursor

control code: $19 (decimal 25)

Moves the cursor to the upper-left corner of the current viewport., It
does not clear any portion of the viewport, nor does it change any of
the viewport settings.

Move Cursor Left

control code: $P8 (decimal p8)

Moves the cursor left one position. Wrapping around and scrolling are

determined by the cursor controls. (See Cursor Controls, earlier in
this chapter.)

Page 18 Chapter 1: The Console Driver

Move Cursor Right

control code: $1C (decimal 28)

Moves the cursor right one position. Wrapping and scrolling are
controlled by the cursor controls.

Move Cursor Up

control code: $1F (decimal 31)

Moves the cursor up one line. Scrolling is controlled by the cursor
controls.

Move Cursor Down (Line Feed)

control code: $PA (decimal 1§)

Moves the cursor down one line. Scrolling is performed by the cursor
controls. (See Cursor Control, earlier in this chapter.)

Return Cursor (Carriage Return)

control code: $PD (decimal 13)

Moves the cursor to the beginning of the current line (the left edge of
the viewport). A line feed may also be issued automatically, depending

on the setting of the cursor controls. Scrolling may also take place.
(See Cursor Control, earlier in this chapter.)

Scroll Op K
control code: $17 (decimal 23)

Causes the contents of the viewport to scroll up, leaving a blank line
at the bottom of the viewport. The cursor does not move.,

Scroll Down
control code: $16 (decimal 22)

Causes the contents of the viewport to scroll down, leaving a blank line
at the top of the viewport. The cursor does not move.

Screen Control Codes Page 19

Horizountal Position
control code: $14 (decimal 24)

Moves the cursor horizontally to the relative column number passed in a
single-byte parameter (§ to 79). A parameter of 1P means to move to the
tenth column in the viewport, not to column 1§ of the whole screen. A
parameter of f) moves the cursor to the leftmost column. To determine
the correct relative column, add the parameter to the value of WNDLFT
(see Viewport Specifications). If the sum is greater than 127
(negative), the cursor moves to the left column.

If the parameter is missing, this control is ignored. This control has
no effect on the vertical position of the cursor.

Vertical Position
control code: $12 (decimal 18)

Moves. the cursor vertically to the relative line number passed in a
single-byte parameter (@ through 23). A parameter of 1§ means to move
to the tenth line in the viewport, not to line 19 of the whole screen.
A parameter of f moves the cursor to the top line.

To determine the correct relative line, add the parameter to the value
of WNDTOP (see Viewport Specifications, earlier in this chapter). 1If
the resulting value is greater than the value of WNDBOT (the bottom line
of the viewport), the cursor is placed in the bottom line of the
viewport. If the parameter is missing, this control is ignored. This
control has no effect on the horizontal position of the cursor.

Absolute Position
control code: $1E (decimal 39)

This control code combines the actions of the Horizontal Position and
Vertical Position control codes. It requires two single-byte
parameters. The first specifies the horizontal position and the second
specifies the vertical position of the cursor. Placement of the cursor
follows the rules given under both Horizontal and Vertical Position
control codes. If both parameter bytes are missing, the command is
ignored.

Page 20 A Chapter 1: The Console Driver

Normal Text
control code: S$PE (decimal 14)

Causes all subsequent characters to be displayed as light characters on
a dark background. It does not affect any characters already on the
screen. This control code sets the CONVID flag to $8p (128 decimal).

Inverse Text
control code: $PF (decimal 15)

Causes all subsequent characters to be displayed as dark characters on a
light background. It does not affect any characters already on the
screen. This control code sets the CONVID flag to f#. See also Normal
Text.

MouseText On
control code: $1B (decimal 27)

Turns on the display of MouseText characters. All displayable
characters in the range $40 through $SF (64 through 95 decimal) are
mapped into the MouseText characters for display.

MouseText Off
control code: $18 (decimal 24)

Turns off the display of MouseText characters.

3

Horizontal Shift
control code: $11 (decimal 17)

Causes the contents of the viewport to be shifted right or left the
number of columns specified by the single byte parameter following the
control code. If the parameter does not exist, or is set to @, the
control has no effect.

The parameter is interpreted as an eight-bit two's complement number.

If it is positive (less than 128 decimal or $7F hex) the contents are
shifted right the number of columns equal to the value of the number.

If it is negative (greater than or equal to 128 decimal or $7F hex), the
contents are shifted left the number of columns equal to the negative
value of the number. 1In both cases, 1f the value is greater than or
equal to the width of the viewport, the viewport is cleared.

Screen Control Codes Page 21

The shifted characters are moved directly to. their destination. The
space vacated by the shifted characters is set to blanks. Characters
shifted out of the viewport are removed from the screen and are not
recoverable,

Space Expansion
control code: $19 (decimal 16)

This control code supports the DLE space expansion that exists in Pascal
text files. It takes one parameter, which represents the number of
spaces to output plus 32. The driver subtracts 32 from the parameter to
determine the number of spaces to output to the screen. If the
parameter does not exist, the Console Driver ignores this control. DLE
expansion can be turned off using the mode value of 4 or 12 in the
UNITWRITE call to the driver (see Pascal Interface, later in this
chapter). It can also be turned om or off with the Cursor Control. The
default is ON.

’Sound the Bell
control code: $@7 (decimal 97)

This control code, when used once, sounds the ProDOS-recommended beep.
It has no effect on the screen. Repeated control codes produce a longer
sound.

Displayable Characters

The Console Driver displays the Apple II's Alternate character set., It
assumes however, that all characters passed to it are in the standard
ASCII character set (range $PfP to $7F, f to 127 decimal). These
characters are mapped into the appropriate character set (normal or
inverse, MouseText) for display purposes.

Characters passed to the Console Driver in the range $89 to SFF (128 to
255 decimal) are a special case. The characters are displayed after the
seventh bit is reset, resulting in this mapping:

$80 - $9F (decimal 128 - 159) mapped to inverse uppercase letters

SAD

$BF (decimal 169 - 191) mapped to inverse special characters

$CP - SDF (decimal 192 - 223) mapped to MouseText characters

SEQ SFF (decimal 224 - 255) mapped to inverse lowercase letters

Page 22 : Chapter 1: The Counsole Driver

This is independent of the settings for normal/inverse and MouseText in
the driver. Reference manuals for specific computers contain details on
the character sets.

Characters in the range $99 to $1F (P to 31 decimal) are defined as
control codes that invoke the operations listed earlier in this chapter,

Characters in the range $20 to $7F (32 to 127 decimal) are defined as
displayable characters and are displayed according to the settings of
the Console Driver.

MouseText

To use MouseText, you must send the MouseText-on control code to the
Console Driver. Characters in the range $4f to $SF (64 to 95 decimal)
are then mapped into the appropriate MouseText character. For example,
to display the file—folder icon instead of the letters ¥ and Y:

27 MouseText-on control code
"x" first part of picture of file folder
y" second part of file folder
24 MouseText-off control code

At the end of a sequence of MouseText characters, be sure to turn off
MouseText with the MouseText-off control code. Any characters not in
the MouseText range will be displayed according to the settings of the
Cousole Driver.

Language Interfaces

The Console Driver can be used with Apple II Pascal, Applesoft BASIC,
and 6502 Assembler Language.

Pascal

The version of the Console Driver that is used with Pascal accepts five
calls, each described in this section. This section also describes the
Pascal data interface and how the Console Driver is called.

Data Interface

Both control codes and text to be displayed are passed to the Console
Driver as a contiguous array of data. For example, to print "Hello" on
line 19, column 15, in inverse, then to home the cursor and to return to
normal text, you would create the following array of data (all numbers
are decimal):

Language Interfaces Page 23

39 absolute position
15 parameter (column 15)
19 parameter (line 1§)
15 inverse text

72 "H"

101 "ell

108 Hln

108 "l"

111 "o"

25 home cursor

14 normal text

This array is not a string in the Pascal sense of the word: the first
byte is data rather than the length of the array (as in a string). The
Console Driver can accept an array of up to 32,767 bytes (Pascal's limit
on integers). ' ’

The second required datum is an integer that denotes the length of the

array to be processed by the Driver. ~In the above example, the integer
could be either a variable with the value 1l or the coanstant "11".

Calling the Console Driver

The Console Driver is a Pascal Attach driver. 1Its unit number is #139.
For information on Pascal Attach drivers, see the Apple II Pascal 1.2
Device and Interrupt Support Tools manual.

To transfer data to the Console Driver to be displayed, use a UNITWRITE
call from a Pascal program. UNITWRITE's format is

UNITWRITE(139, ARRAY_ADDR, LENGTH_ARRAY, MODE)
where
139 is the Console Driver's unit number

ARRAY ADDR is a VAR parameter denoting the address of the array of
data

LENGTH_ARRAY is the length of the array passed

MODE is the mode expression (which is an integer). MODE can have
four values: »

value DLE-expansion Auto linefeed
P TRUE TRUE
2 FALSE TRUE
8 TRUE . "FALSE

12 FALSE FALSE

Page 24 Chapter 1: The Console Driver

When passing a string to the driver, always reference the string as
STRING_VAR[1]

so as not to pass the length byte found in STRING_VAR[Q].

Status Calls

The Console Driver accepts only one status call. It returns a data
structure that describes the Driver's status. This call instructs the
Console Driver to copy its values into this record, where you can
inspect it. The variables are described earlier in this chapter.

Here 1s the form of the UNITSTATUS call:
UNITSTATUS(130, CON_STAT_ BLK, §)

where
139 is the unit number of the driver
CON_STAT_BLK is a record with the format:
TYPE BYTE = f..255

VAR CON_STAT BLK: PACKED RECORD OF
CV:BYTE;
CH:BYTE;
WNDTOP :BYTE;
WNDBOT:BYTE;
WNDLFT :BYTE;
WNDRGT : BYTE;
WNDWTH:BYTE;
WNDLEN:BYTE;
CONWRAP:BYTE;
CONADV:BYTE;
CONLFD:BYTE;
CONSCRL:BYTE;
CONVID:BYTE;
DLEFLAG:BYTE;
CONFILL:BYTE;
MOUSE : BYTE;

END;

Control Calls

The driver accepts four control calls, which allow you to

Language Interfaces ' Page 25

- get the current location of the cursor and the text character

at the current cursor location

= save and restore the contents of the current viewport.
You must supply the buffer in which this data is stored, as it is not
in the Console Driver. It is recommended that you allocate some space
on the heap for this buffer, allowing this space to be reclaimed as
needed. If your program does not require this function, this space can
be saved. To calculate the amount of space required for a viewport,
multiply its width (WNDWTH) by its length (WNDLEN).

Getting the Current Cursor Position

To get the current location of the cursor on the text screen, make a
UNITSTATUS call with the form

UNITSTATUS(139, LOCATION, 2);
where LOCATION is a record of the form
LOCATION = RECORD
HORIZONTAL: INTEGER;
VERTICAL: INTEGER;
END;
The Console Driver sets these values equal to the screen coordinates, CH
and CV. These are integer values and are not relative to the viewport,
but represent the actual column and line number.
Getting the Current Text Screen Character
Make a UNITSTATUS call of the form
UNITSTATUS(130, CHARACTER, 8194);
where CHARACTER is a byte (f..255) variable. The driver will return the
current binary value of the character found at the current cursor
location. You must map this value in the proper ASCII interpretation.

Saving the Viewport

To save the contents of the viewport, make a UNITSTATUS call of the form

UNITSTATUS(130,>VWPORT_ﬁUF, 16386);

Page 26 Chapter 1: The Console Driver

where
1390 is the Console Driver's unit number

VWPORT_BUF is a buffer to hold the contents of the viewport.

Restoring the Viewport

To restore the contents of the viewport, make a UNITSTATUS call of the
form

UNITSTATUS(130, SCREEN BUF, 24578);

where
139 is the Comsole Driver's unit number
VWPORT_#UF is a buffer to hold the contents of the screen.

You must keep track of which viewport has been saved in which buffer.
Before restoring a Viewpor;, you must set the required viewport before
making the restore call.
BASIC
The version of the Console Driver that is used with BASIC programs
supports twelve functions, all of them ampersand (&) routines. Each is
described below.

= Output Data to the Comsole

=~ Save the Current Viewport

= Restore the Current Viewport

= Get the Status of the Comsole Driver

- Get the Current Cursor Position

= Get the Current Text Screen Character

= 1Initialize the Counsole Driver

= Get a Segment of Memory

- Get a Console Driver Error

- Get the Console Driver Version

Language Interfaces Page 27

= Get the Console Driver Copyright Notice

= Release the Console Driver

Console Driver Functions

Calling the Console Driver

Calls to the Console Driver are made with the "ampersand hook." BASIC
statements used to call the Console Driver have the form

&name (parameter list)
- Specific formats for the calls are described below.
Output Data to the Console

There are two Console Driver calls to output data to the display. The
first has the form

&WRTSTR(SS)

where S$ is a string. This call outputs the contents of S$ to the
display. S$ can include both control codes and ASCII characters.

The second has the form
&WRITE(I1%, I2%, SAS)

where SA$ is a one-dimensional string array, I1% is a starting index,
and 127 is an ending index.

This call outputs the contents of the string array SA$, beginning with
the string selected by the index Il1%Z and ending with the string indexed
by I2%. These strings can contain both control codes and ASCII
characters.

Save the Current Viewport Contents

Before saving the contents of the viewport, first allocate a buffer via
a call to the special function "Get memory," which has the form

>MEM(PZ, AZ)

P%Z is an integer that specifies the number of pages (256 bytes) of
memory to allocate A% is the address of that memory. Here is a formula
for calculating the number of pages required:

Page 28 Chapter 1: The Comnsole Driver

(WNDWTH * WNDLEN) / 256
rounding up to the nearest integer.
For example, to store the contents of the whole screen requires an
allocation of eight pages. If not enough pages are available,

BASIC's OUT OF MEMORY error will occur.

Once the >MEM call has been made, you can make the call to save the
contents of the viewport. It has the form

&SVVP(AZ)-

where AZ is the address returned from the >MEM call.

Restore the Current Viewport Contents

To restore the viewport contents, make a call with the form
&RSTRVP(AZ)

where AZ is the address used in the &SVVP call. This restores the

previously saved contents to the viewport. Be sure that the contents

you restore are the same size as the current viewport.

Get the Status of the Console Driver

To get the status of the console driver, make this call:
&CDINFO(CIZ)

where CIZ is a l6-element array, for example
DIM CIZ(16)

This returns the contents of the status block to the array CI%. The

following is a mapping of the array elements to the status block
elements:

CIZ(1) = ¢Cv
CIZ(2) = cH
CI%Z(3) = WNDTOP
CI%(4) = WNDBOT
CI%(5) = WNDLFT
CI%Z(6) = WNDRGT
CIZ%Z(7) = WNDWTH
CI%(8) = WNDLEN
CI%(9) = CONWRAP

CIZ(1p) = CONADV
CIZ%Z(11) = CONLFD

Language Interfaces Page 29

CIZ(12) = CONSCRL
CIZ(13) = CONVID
CI%(14) = DLEFLAG
CIZ%(15) = CONFILL
CI%(16) = MOUSE

Get the Current Cursor Position

To get the current absolute coordinates of the cursor, make this call:
>CP(HZ, VZ)

where HZ is the value of CH (x-coordinate) and V% is the value of CV

(y=coordinate).

Get the Current Text Screen Character

- To get the binary value of the text character at the current cursor
position, make this call:

>CHR(CZ)

where CZ is the character returned.

Initialize the Console Driver

To initialize the Console Driver to its default environment, make this
call:

&INITCD

Release Console Driver

To release the Console Driver Ampersand package and to restore the
screen to a normal BASIC environment, make the call: "

&STPCD(C%)

where C% is 8p.

Get Counsole Driver Version and Copyright
To get the version number of the Comnsole Driver, make the call:
&CDVRSN(VZ, RZ)

where V7% is the version number returned and RY is the revision number.

Page 30 ’ Chapter 1: The Comnsole Driver

To get the Console Driver's copyright notice, make the call:
&CDCPYRT (CM$)

where CM$ is the copyright notice returned.

Setting the Console Driver Address

Before the ampersand package can use the Console Driver, it must have
the location of the Console Driver. Do this with the call:

&STCDADR(AZ)

where AZ is the starting address (also of the entry-point) of the
Console Driver. This call must be made before any other calls to the
ampersand package.

Loading Ampersand Package and Console Driver
This BASIC routine loads the ampersand package and Console Driver:

19 PRINT CHR$(4);"brun release": REM release memory buffers
2p PRINT CHRS$(4);"pr#3"

30 REM load & initialize Console Driver & UIR

49 Al =9 : A2 = @

59 PRINT CHRS(4);'"brun rboot"

60 Al = USR(P),"conuir.rel": REM load Comsole Driver & UIR
79 A2 = USR(P),"condamp.rel™: REM load ampersand interface
80 CALL A2

99 &STCDADR(AL)

Using the Console Driver With Your Program

A BASIC program using the Console Driver should do no console display
through BASIC. All display should be done with the Console Driver.

This example uses the Console Driver (after it and the ampersand package
have been loaded) to place the string "Hello there" on the screen:

19 DIM ABS$(3)
29 DIM STS$(11)

39 ABS(1l) = CHRS$(3P): REM ABSOLUTE POSITION
49 ABS(2) = CHR$(1P): REM X COORDINATE
50 ABS(3) = CHRS(15): REM Y COORDINATE

69 STS = "Hello there"
79 &WRTSTR(ABS)
80 &WRTSTR(STS)

Language Interfaces Page 31

Relocating the Console Driver

The Console Driver is a REL (relocatable) file produced by the EDASM
Editor/Assembler. It must be relocated in memory before it can be used.
Follow the instructions in either the ProDOS Assembler Tools manual or
6502 Assembler/DOS Tool Kit manual, and use RBOOT and RLOAD to perform
the relocation.

Assembly Language

‘The version of the Console Driver that is used with assembly language
programs supports the following seven functions:

= OQutput Data to the Console

- Save the Current Viewport

- Restore the Current Viewport

= Get the Status of the Console Driver
= Get the Current Cursor Position

- Get the Current Text Screen Character

- Initialize the Coﬁsole Driver

Console Driver Functions

The Console Driver has a single entry point. Calling the driver is
done in much the same way as ProDOS MLI calls. See the ProDOS
Technical Reference Manual for details.

Calling the Comnsole Driver

The driver has only one entry point, located at the beginning. Once
the driver has been relocated, its starting address is the entry point
of the driver. A call is made as shown below:

JSR PCONSOLE R
DFB COMMAND

DW PARAMPTR

BNE ERROR_HANDLER

where the label PCONSOLE is the starting address of the driver. You
determine this when deciding where to relocate the driver in memory. In
the calling program, there should be a statement of the form:

Page 32 Chapter 1: The Console Driver

PCONSOLE EQU nnnn
where nnnn is the starting address of the driver.

The JSR is followed by a byte that holds the command value, which is a
number that selects the appropriate Console Driver function. For
specific values, see below.

Following the command value byte is a two-byte pointer to a parameter
list. The format for the parameter list varies according to the Console
Driver function. The specific formats are described below.

The driver returns to the caller with the carry flag clear if no error

- occurred, or with the carry flag set if an error did occur. The calling
program should check the carry flag (the BNE instruction shown above)
and report an appropriate error. The actual error type is passed back
to the caller in the A-register. The error handler can check this value
to determine which error occurred.

Output Data to the Comsole
This call outputs data (both text and control codes) to the Console

Driver. The parameter list is a pointer to a data string followed by a
length value. For example, DATAl would point to

DATAl DFB 39 ;absolute position
DFB 19 ;X position
DFB 15 ;y position
ASC "Hello there!!"

LENGTH1 EQU 16 ;length of DATAIL

calling format:

JSR PCONSOLE
DFB i) ;joutput to screen
DW OUTPUTDATA

parameter list format:

OUTPUTDATA DW DATAL
DW LENGTHI

This call returns no errors. The A-register value will be P and the
carry flag will be clear.
Save the Current Viewport Contents

This call saves the contents of the current viewport in the buffer
pointed to in the call--in' this case SAVEBUFFER. This buffer must be

Language Interfaces ' Page 33

large enough to hold the entire contents of the viewport. The number of
bytes required is equal to the width of the viewport (WNDWTH) times the
length (WNDLEN). In the example shown, the buffer is large enough to
hold the contents of the entire screen (80 columns by 24 lines).

calling format:

JSR PCONSOLE
DFB 1 ysave viewport
DW SAVEBUFFER

parameter list format:
BUFFERSIZE EQU 1929 ;full screen

SAVEBUFFER DS BUFFERSIZE

This call returns no errors. The A-register value will be P and the
carry flag will be clear.

Restore the Current Viewport Contents

This call restores the contents of the current viewport from the buffer
pointed to in the call-—in this case SAVEBUFFER. Be sure the viewport
contents to be restored matches the size of the current viewport. A
viewport can be defined, its contents saved, and then the viewport can
be redefined as the same size but at a different location on the screen.
Then the contents can be restored to it. This lets you move a viewport
and its contents around the screen.

calling format:

JSR PCONSOLE
DFB 2 ;restore viewport
DW SAVEBUFFER

parameter list format:

SAVEBUFFER DS BUFFERSIZE
This call returns no errors. The A-register is @ and the carry flag is
cleared.
Get the Status of the Console Driver
This call returns the current status of the Console Driver in the status
block pointed to in the call-——in this case STATUSBLK. Be sure the

status block used matches this description exactly--data may be
destroyed if the status block is smaller than the one described.

Page 34 . Chapter 1: The Console Driver

calling format:

JSR PCONSOLE
DFB 3 ;get status
DW STATUSBLK

parameter list format:
STATUSBLK EQU *

cv DFB
CH DFB
WNDTOP DFB
WNDBOT DFB
WNDLFT DFB
WNDRGT DFB
WNDWTH DFB
WNDLEN DFB
CONWRAP DFB
CONADV DFB
CONLFD DFB
CONSCRL DFB
CONVID DFB
DLEFLAG DFB
CONFILL DFB
MOUSE DFB

RS SR S S S S S SRS G SR Y

This call returns no errors. The A-register will be p and the carry
flag will be clear.

Get the Current Cursor Position

This call returns the absolute screen coordinates of the current cursor
position. XPOS is the column and YPOS is the line. These values
correspond the values of CH and CV (described earlier).

calling format:

JSR PCONSOLE
DFB 4 ;get cursor position
DW CURSORPOS

parameter list format:

CURSORPOS EQU *
XPOS DFB i
YPOS DFB]

This call returns no errors. The A-register will be P and the carry
flag will be clear.

Language Interfaces Page 35

Get the Current Text Screen Character

This call returns the binary value of the text character located at the
- current cursor position. This value reflects whether the character is
inverse, normal, or MouseText. The calling program must decipher the
value.

calling format:

JSR PCONSOLE
DFB 5 ;get text character
DW TEXTCHAR

parameter list format:
TEXTCHAR DFB)
This call returns no errors. The A-register will be § and the carry
flag will be clear.
Initialize the Console Driver

This call sets the Console Driver back to its default state. No
parameter list is required.

calling format:

JSR PCONSOLE
DFB 6 yinitialize
DW)}

This call returns no errors. The A-register will be § and the carry
flag will be clear.

Using the Console Driver With Your Program

This section describes how the Console Driver uses soft switches and the
Zero Page, and introduces the need for relocating the Console Driver.

Console Driver Zero Page Use

The console driver uses zero page locations $2f to $4P. The contents of
these locations are saved when the driver is called, and restored upon
exit.

Page 36 CHapter l1: The Comsole Driver

Console Driver Soft Switch Use

The counsole driver uses soft switches to control its use of the display
memory:

8PCOL ($CPpPD) = turn on 8f=column card

8PSTORE ($Cppl)

use auxiliary memory for display

PAGE2 (scbss, $CP54)

to switch between even and odd locations on
the 8f—column card

ALTCHARSET (S$SCP9F)

to use alternate character set

When the Console Driver is called, these switches are set to their
appropriate values. Since the Console Driver is intended to be the sole
manager of the console display, these switches are not reset when the
driver returns to the calling program. It is up to the program to reset-
to the normal enviromment.

Relocating the Comsole Driver

The Console Driver is a REL (relocatable) file produced by the EDASM
Editor/Assembler. It must be relocated in memory before it can be used.
Follow the instructions in either the ProDOS Assembler Tools manual or
6502 Assembler/DOS Tool Kit manual, and use RBOOT and RLOAD to perform
the relocation.

Page 37

Chapter 2

Standard User Input Routine

Overview

Why Standardization is Needed

Most application programs at some point ask the user to enter data at
the keyboard. Unfortunately, there has been little standardization in
the way that programs interface with the user. Pascal and BASIC have
such different conventions that a user has to completely relearn how to
interact with ome language after using the other. Many application
programs use the input conventions built into the language being used,
while others use more sophisticated and user~friendly ones. The

user of several application programs may have just as many different
interfaces to contend with.

Overview of the User Input Routine
The User Input Routine (UIR) described here follows the standards

published in Apple II Human Interface Guidelines and is a superset of
the standards used in the popular AppleWorks program.

The UIR displays a field on the screen. This field comsists of the
default string, followed by a series of fill characters. To the right
of the default string, a cursor is visible. Initially, this is the
Insert Cursor described in the Guidelines. Pressing CONTROL-E toggles
between the Insert Cursor and the Replace (or overstrike) Cursor.

When the Insert Cursor is present, typing any printing character inserts
that character into the field at the current cursor position. All
characters in the field to the right of the cursor are shifted right.

When the Replace Cursor is present, typing any printing character places

Page 38 Chapter 2: Standard User Input Routine

that character in the field replacing the character under the cursor.

The user can edit the field by adding or replacing characters or by
using the editing commands described below. When satisfied with the
string in the field, the user presses the RETURN key. This terminates
the UIR and returns control to the application program. The user's
response will be in the string variable specified when the UIR was
called (replacing the default).

If the application program specifies a string variable that can contain
more characters than the width of the field, the UIR retains characters
that are hidden beyond the right edge of the field. These characters
return to view if characters in the field are deleted.

The UIR supports these editing commands:

= The left- and right-arrow keys move the‘cursor left and right
within the field. ’

= DELETE and CONTROL-D both delete the character to the left of
the cursor. The characters to the right of the cursor are
shifted left. ' '

=~ CONTROL-F deletes the character under the cursor (Forward
Delete).

- CONTROL-E toggles between the Insert and Replace cursors.
=~ CONTROL-X deletes all characters in the field.

- CONTROL-Y deletes all characters from the cursor position to
the end of the field (including those characters saved by
insert).

- CONTROL-Z restores the default string.

Customization and Advanced Uses

In general, the UIR behaves as described in the Overview. It can,
however, be customized to the needs of a particular application
program. A structure called the Information Block lets the application
program tell the UIR how to react to the user's keystrokes, and lets
the UIR tell the application program about its status.

If a viewport has been defined, the UIR respects it, with one
restriction: the last two positions in the viewport can not be
included in the input field. A field as large as 254 characters can be
specified.

Customization and Advanced Uses Page 39

Terminating the UIR

Normally, when the RETURN key or the ESCAPE key is pressed, the UIR
terminates with the input string set to the characters currently in the
field on the screen (fill characters excepted).

Other characters can be used to terminate (or interrupt) the UIR. Up
to 2P characters can be specified as termination characters. For each
termination character, the application program can specify whether the
Open Apple or Solid Apple key must be pressed with the character.

For each termination character, the application program can also
specify whether to completely terminate the UIR or just to interrupt it
temporarily. After the UIR is interrupted, then called again, it
remains as it was when it was interrupted (unless the application
program has changed parameters in the Information Block). One way to
use this feature is to let a help character (perhaps Open Apple-?)
interrupt the UIR during editing to display a help message.

Immediate Mode
Immediate mode, an advanced use of the UIR, allows the application
program to constantly monitor the input process. This feature can be

used by the application program to update a clock display, provide
animated sequences, or run in demonstration mode.

Information Block

The Information Block is divided into three logical sections:
- General Information,
- Termination Information, and

- Internal Information.

Page 40

Chapter 2: Standard User Input Routine

Format of the Informationm Block

max_terms
Input_Info
H

width
fil;_char
mouse_fill

cursor
control
beep

immediate

entry_type

bord_ch

.
b
.
b

exit_type

last_event
last_ch
lasq_mod
n_chars

char_list
mod_list

term list

equ
equ
db
db
db

db

db

db

db

db

db

db

db
db
db
db

ds
ds

ds

29 sMaximum number of terminators

General Information

) ;Width of the field on the screen

"o ;Fill character

) ;P0-use "fill char" as fill character
; l=use MouseText ghost underline

9 ;current cursor being used

;f=insert cursor
; l=replacement cursor

)] ;P=Control chars will be ignored
;1-Control chars allowed as input

9 sP~errors will not be beeped
;l=errors will be beeped

] ;P-calling routine gets control after the

; complete input is keyed in by user
;1=calling routine gets control after each
; keypress check

] ;Indicates type of entry into routine
;@-initial entry
; l=interrupt re-entry.
;2-immediate re-entry

) ;char to blink outside of field

Termination Information

) ;Indicates which termination condition
3 occurred

;#-not terminated yet A

;not P-index into terminating char list
;last event type (not used)

;character user keyed in

; keypress modifier

;Number of terminator chars currently

y defined

SSsow

;The next 3 items define what keystrokes
3 will terminate or interrupt the routine.

max_terms ;Chars which will terminate input
max _terms ;Modifiers for each char in"cha;_list”
; #-none
; 1-Open Apple
;2=Solid "Apple
;3-Either Open or Solid Apple
max terms ;Termination types for each char in

Information Block

°
’

.
’

origin x db
origin_y db
cursor_x db
cursor_y db
Cursor_pos db
input_length db
slow blink dw

fast_blink dw

SN STLCE ST SR S SY

;3 '"char list"

Page 41

;f-terminate input
yl=interrupt input

Internal Information

;X coordinate
3y coordinate
;3X coordinate
;¥ coordinate
syposition

of
of
of
of
of

;length of Input
;slow blink rate
;fast blink rate

start of field

start of field

cursor in field

cursor in field

cursor in field (l..width)
String (incl invisib part)

Page 42 Chapter 2: Standard User Input Routine

Information Block Default Values
The default values of the Information Block are:

width=254;
fill char=' ';
mouse_fill=9;
cursor=0;
control=0;
beep=1;
immediate=9;
entry_type=p;
exit type=§;
bori:ch=' '
last_event=§;
last_ch=p;
last_mod=9;
n_chars=2;

char_list[l]=chr(13); {RETURN}
char_list(2]=chr(27); {ESCAPE}
mod_list(l]=0;
mod_list[2]=0;
exit_list[1]=0;

]

exit list([2]=p;
origin_x=
origin_y=
cursor_x=
cursor_y= ,

cursor_pos=9;

input_length=p;

slow_blink= , Values necessary to blink cursor
fast_blink= , 80 times per minute

Curr relative cursor coordinate in viewport
defined by Console Driver

v v e

Information Block Page 43
General Informatiom Section

width

This parameter tells the UIR how wide to make the field on the screen.
When the UIR is called, it displays the input string's default value at
the cursor position. If there is any room left in the field, fill
characters are displayed (the number of fill characters equals width
minus length of input string). The parameter named fill char contains
the fill character. Width is initially 254 characters.

If the value of width is greater than the number of character positions
from the start of the field to the end of the viewport minus two, the
UIR reduces width accordingly.

'filL_char

This is the fill character that is used in the field. It is initially
the blank character. Mouse_fill (see below) overrides fill_char.

mouse_fill

If mouse_fill is 1, the MouseText ghost underline is used as the fill
character. If mouse_fill is P, the character in fill char is used as
described above. Mouse fill is initially @.

Before using this option, the application program must determine whether
MouseText is available in ROM., If memory location $FBB3 contains $96
and memory location $FBCP does not contain $EA, then MouseText is
available.

cursor

This represents the cursor being used. It is § when the insert cursor
is in use, and 1 when the replace cursor is in use. CONTROL-E toggles
between the two. The initial value is normally p, but the application
program can force the UIR to start with the replace cursor by setting

this parameter to 1 before calling the routine.

controL

This parameter is initially 9, meaning that control characters are not
allowed as input (typing a control character causes a beep).

If this parameter is set to 1, control characters (ASCII values less
than 32) are allowed as input from the keyboard. To insert a control
character, the user must press the Open Apple key, the CONTROL key, and

Page 44 Chapter 2: Standard User Input Routine

one other key. This lets the user type, for example, CONTROL-X without
deleting the input field.

The actual value inserted in the string is the ASCII value + 128, which
appears on the screen as the inverse of the corresponding character.

For example, to insert the carriage return character (ASCII 13), the
user presses Open Apple, CONTROL, and M (ASCII 77). The screen shows an
inverse M, and the string will contain the value 2§5 (77+128). To
extract the control character, subtract 192.

ASCII CONTROL Value in Value on
Code Character String Screen
13 CONTROL-M 295 inverse M

Note that editing characters and termination characters are not affected
by the setting of control.

beep

If this parameter is 1 (the initial value), any illegal keypresses cause
the UIR to beep. If it is P, there is no beep.

immediate

If this parameter is 1, the UIR returns to the application program after
each keypress check. When the application, program next calls the UIR,
it will be considered an "immediate" re-entry. .
If this parameter is § (the initial value), the UIR returns to the
application program only after a termination character is pressed.

During "immediate" processing, the application program can tell whether
a key has been pressed, by checking the last_ch parameter. If it is not
@, a key has been pressed and last_ch contains the ASCII value of that
keypress (its corresponding keypress modifier is in last_mod). When the
UIR is re—entered, it checks last_ch and last_mod. 1If there is a
keystroke, the UIR processes it; otherwise it looks for the next
keystroke. The application program can therefore "process" the
keystroke before the UIR does. At this point, the application program
can leave the keystroke intact and re-—enter the UIR, which will also
"process’ the keystroke. Alternatively, the application program can set
last_ch and last_mod to @, which causes the UIR to ignore the keystroke.

Application programs that use immediate mode must keep the cursor
blinking at the correct rate. See the description of slow_blink and
fast_blink.

Information Block ' Page 45

entry_type

Tells the UIR what type of entry is being made. 1If entry_type is 9, it
is an initial entry and a new field is established. If the value is 1,
the routine assumes it is being re—entered after an interrupt
termination. If the value is 2, the routine assumes it is being
re-entered after "immediate" processing by the application program.
This parameter is managed by the UIR and normally does not need to be
changed by the application program.

bord_ch
Normally, the cursor blinks by alternating between the cursor character
and the space character. Sometimes, for example when the field is

filled and the cursor resides one character beyond the field, bord_ch
(border character) is used instead of space.

Termination Information Section

exit_type

When the UIR terminates, this parameter contains the number (1 through
20) of the termination character that caused the termination. If
exit_type is f, this indicates that the UIR has not terminated yet (that
is, immediate mode is in effect).

last_gvent

Not currently used.

las;_ch

Contains the ASCII value of the last keypress, if the last keypress
check sensed a keystroke. It contains § if no keypress was sensed. It
is useful for application programs using the UIR's immediate mode.

las;_pod

Contains the keystroke modifier if a keystroke was sensed by the last
keypress check. Otherwise it is f). Possible values are:

- no modifier was pressed

= Open Apple key was pressed together with another key

= Solid Apple key was pressed together with another key
=~ both Apple keys were pressed together with another key

W~

Page 46 Chapter 2: Standard User Input Routine

n chars

The number of termination characters that have been configured. This is
initially 2 (for RETURN and ESCAPE).

char_list

This is a 2f-byte table containing the ASCII values of the configured
termination characters. For the alphabetic characters A through Z, only
the uppercase ASCII values need be in the table.

The UIR looks only at the first n_chars bytes. The first two bytes in
this list are initially 13 and 27, the ASCII codes for RETURN and
ESCAPE.

mod_list

This is a 2f-byte table that specifies what keystroke modifiers are
needed for each termination character to be recognized.

p - no modifiers can be pressed

1 - Open Apple must be pressed together with termination character

2 = Solid Apple key must be pressed

3 - either the Open Apple or Solid Apple key must be pressed
term_list

This is a 2f-byte table that specifies the termination type of each
termination character. A value of § indicates that a normal termination
will occur when the termination character (along with any keystroke
modifiers) is pressed. A value of | indicates that an interrupt
termination will occur.

Internal Information Section

origin_x and origin y

These contain the relative coordinates of the start of the field within
the current viewport. When the UIR is entered initially (not reentered
after an interrupt termination or immediate termination), origin_x and
origin_y are set to the current relative cursor position.

cursor_x and cursor_y

These contain the relative coordinates of the cursor within the current

viewport. Whén the UIR is entered initially, the cursor is positioned
after the default input string in the field, and cursor_x and cursor_y

Information Block Page 47
are set to that coordinate location.

Cursor pos

This contains the relative position of the cursor in the field (not in
the viewport). The value of cursor_pos ranges from 1 to width.

input_length

Contains the current length of the input string. If the maximum size of
the input string is larger than the width of the field on the screen,
the UIR uses the invisible part of the input string to save characters
that were pushed out of the field by insertioms. Thus, input_length may
be greater than width. However, in this case, the length of the input
string actually returned to the user still ranges from 1l to width. The
returned length of the input string is contained in the first byte of
the input string.

slow_blink and fasq_plink

These are the count-down timers used to get the correct blinking
frequency for the cursor. This is a concern only in immediate mode,
when the program no longer has control over the rate.

An important part of the Human Interface Guidelines is that the cursor
blinks 80 times a minute, with one phase taking twice as long as the
other. That is, if the insert cursor is active and under a character in
the field, the character should be visible twice as long as the)
underline. And if the replace cursor is active, the inverse character
should be visible twice as long as the normal character.

P

The initial values of slow_blink and fast_blink cause the correct cursor
blink rate. However, if immediate mode is turned on, the cursor will no
longer blink at the correct rate because the application program program
will get control in the middle of the blink loop. The application
program must change slow_blink and fast_blink so that the cursor will
again blink at the correct rate.

Language Interfaces

The User Input Routine can be used with Apple IT Pascal, Applesoft
BASIC, and 6502 Assembly Language.

Page 48 Chapter 2: Standard User Input Routine

Pascal

The Apple II Pascal version of the UIR is part of the Console Driver
(see Chapter 2) and therefore requires that the Pascal environment be
loaded with the correct Attach files. The Console Driver is configured
as unit number 139. (Pascal 1.3 or the 128K version of Pascal 1.2 is
required.)

To access the UIR, a Pascal program must make calls to the Console
Driver. Three unitstatus calls are provided to initialize, set, and get
the Information Block. The actual call to the UIR is in the form of a
unitread. These calls are described later in this section.

Format of the Information Block

The following is the Pascal equivalent of the Information Block. The
text of this data structure is in the file INPUT.INFO.TEXT on the
/PASCON disk.

const max_terms=20; {Maximum number of terminators}
type byte=p..255;
var Input_Info:packed record

{General Information}

{ }
width:byte; {Width of the field on the screen}
fill char:char; {Fill character}
mouse_fill:byte; {P=use "fill char" as fill character
l-use MouseText ghost underline}
cursor:byte {current cursor being used

f-insert cursor
l-replacement cursor}

control:byte; {#=Control chars will be ignored
l-Control chars allowed as input}
beep:byte; {f-errors will not be beeped
l-errors will be beeped}
immediate:byte; {P-calling routine gets control after the

complete input is keyed in by user
I=calling routine gets control after each
printable character is input}
entry_ type:byte; {Indicates type of entry into routine
f-initial entry
l-interrupt re-entry
2-immediate re-entry}
bord_ch:char; {char to blink outside of field}

{Termination Information}

{ }

exit_type:byte; {Indicates which termination condition occurred

Language Interfaces . Page 49

f-not terminated yet
not f-index into terminating char list}

last_event:byte; {last event type (not used)}
last_ch:char; {character user keyed in}
last_mod:byte; {keypress modifier}

n_chars:byte; {Number of termination chars defined}

{The next 3 items define what keystrokes will
terminate or interrupt the routine. The case
of each character is ignored}

char_list:packed array [l..max_terms] of char;
{Chars which will terminate input}
mod_list :packed array [1..max terms] of byte;
{Modifiers for each char in "char _listc"
f~none
1-Open Apple
2-S0lid Apple
3-Either Open or Solid Apple}
term list:packed array [l..max_terms] of byte;
{Termination types for each char in "char_list"
f~-terminate input
l-interrupt input}

{Internal Information}

{ }

origin x : byte; {x coordinate of start of field}

origin y : byte; {y coordinate of start of field}

Cursor_x: byte; {x coordinate of cursor in field}

cursor_y: byte; {y coordinate of cursor in field}

Cursor_pos: byte; {position of cursor in field (l..width)}
input_length:byte; {length of Input String (inel invisible part)}
slow_blink:integer; {slow blink rate}

fast_blink:integer; {fast blink rate}

end {Input_}nfo};

Console Driver Calls

Initializing Input Information

To set the UIR Information Block to its default values, call the
procedure

init_mode:=24577; {Console Driver command $6001}
un1tstatus(l3@ Input_Info,init mode);

Page 50 A Chapter 2: Standard User Input Routine

or if the console driver is also to be initialized, use

unitclear(130);

By the Way: The variable Input Info in the unitstatus above
call is not actually used by the UIR. It is needed in the
unitstatus call because of its parameter structure.

The Pascal system performs an automatic unitclear when it is
started up.

Retrieving Input Information

To get the current settings of all the Input Information parameters,
call the procedure

get_info:=16385; {Console Driver command $4991)}
unitstatus(l3ﬂ,Inpup_Info,geq_info);

where Input_Info is a record with the format 'specified in "Format of the

Information Block." The include file INPUT.INFO.TEXT can be used to
define the variable Input_Info.

Setting Input Information
To change the data in the UIR Information Block, call the procedure

set_info:=8193; {Console Driver command $2pp1}
unitstatus(13D,Inpuq_1nfo,se;_info);

where Input_Info is a record with the format specified in "Format of the
Information Block." If this call is never made, the UIR uses the
default values.

Changing any parameters in the record will have no effect until the
unitstatus call is made.

Calling the User Input Routine

To call the UIR, call the procedure:

unitread(13¢,Input_Str,max_length);

Language Interfaces Page 51

where Input_Str is a string, supplied by the calling routine, where the
UIR will store the user’'s keystrokes. Max . _length specifies the maximum
number of characters that will fit in the string (usually 8P unless
Input_Str is defined as an extended string).

If the input string has an initial value, the UIR assumes that it is a
default value and displays it.

Upon return from unitread, IORESULT will contain the exit _type value
that is the index into the char_list of terminating characters.

Pascal Examples

The program named Demo can be used to try out many of the UIR's
features.

In the simplest use of the UIR, the application program uses the Console
Driver to display a question on the screen and then calls the UIR for
the answer. Here is a program segment that illustrates this:

VAR
question,answer:string;

question:='What is your name ? ';

answer:="'";
unitwrite(13P,question(l],length(question));
unitread(13p,answer,80);

If the application program is to provide a default name:

VAR
question,answer:string;
question:='What is your name ? ';
answer:='Fred’';
unitwrite(139,question(l],length(question));
unitread(13p,answer,80);

If the application program is to provide the user with a small visible
field:

CONST
get_info=16385; {Console Driver command $4p91}
set_info=8193; {Console Driver command $29P1}
VAR

question,answer:string;

Input_Info:packed record
{use record structure in 5.1.2}
end;

Page 52 ‘ Chapter 2: Standard User Input Routine

LI)

{Get the current Information Block}
unitstatus(13p,Input_Info,get_info);
{Change the desired parameters}

Input_Info.width:=12;
Input_Info.fill char:='.';

{Set the updated Information Block}
unitstatus(139,Input_Info,set_info);
{The rest of the logic is the same}

question:='What is your name ? ';
answer:='Fred';
unitwrite(139,question(l],length(question));
unitread(13p,answer,8p);

BASIC

The Applesoft BASIC version of the User Input Routine consists of
several ampersand (&) calls. The ampersand facility allows a
machine-language program to be loaded from a BASIC program, and its
functions called in the form of BASIC commands. Five such commands are
available: '

&INITINPUT = initialize Information Block
&GETINFO(IBZ) - get Information Block

&SETINFO(IB%Z) =~ set Information Block

&INPUT(ISS) = call UIR

&EXITINPUT = remove package from ampersand hooks

where IB7% represents any legal integer array and IS% any integer string
name.

If these are to co-exist with other ampersand calls, CONDAMP.REL must be
loaded last.

The BASIC disk contains the UIR in a relocatable file named CONUIR.REL.

The RLOAD facility (one of the ProDOS Assembler Tools) must be used to
load CONUIR.REL from within the application program.

&INITINPUT

This call initializes the Information Block to its default values. The

Language Interfaces Page 53
default values are defined earlier in this chapter.

&GETINFO(IBZ)
This call retrieves the current Information Block and stores it in the
integer array named IB%Z. The array IB% should be dimensioned for at

least 22+3*max_terms integers, where max_terms is currently 24.

Here is the content of each integer in IB%:

IB%Z(1l) = width
IBZ(2) = fill char
IB%(3) = mouse_fill
IB%Z(4) = cursor
IB%(5) = control
IB%Z(6) = beep
IB%(7) = immediate
IB%(8) = entry_type
IBZ(9) = bord_ch

IBZ(19) = exit_type

IB%Z(1l) = last_event
IBZ(12) = last_ch
IBZ(13) = last_mod
IBZ(14) = n_chars
IBZ(15) = char_list
IB%(35) = mod_list
IB%(55) = term list
IBZ(75) = origin x
IBZ(76) = origin_y
IBZ(77) = cursor_x
IBZ(78) = cursor_y
IBZ(79) = cursor_pos
IBZ(80) = input_length
IB%(81) = slow_blink
IB%(82) = fast blink
&SETINFO(IBYZ)

This call moves the contents of the integer array IBZ into the Input
Information Block. The format of IBY is assumed to be the same as
described above.

&INPUT(ISS)

This is the actual call to the UIR. The variable ISS is a string that
contains the default Input String and will contain the result of the
user's input.

Page 54 Chapter 2: Standard User Input Routine

SEXITINPUT

This call terminates the UIR and disconnects the ampersand package.

BASIC Examples

The program named STARTUP on the BASCON disk can be used to try out many
of the UIR's features.

In the simplest use of the UIR, the application program displays a
question on the screen and then calls the UIR for the answer.

The three programs that follow are for illustration only;
they won't run as is.

Here is a program segment that illustrates:

PRINT CHRS$(4);'"BLOAD CONUIR.OBJ"
PRINT "What is your name ? '
&INPUT(ISS)

If the application program is to provide a default name:

PRINT CHRS(4);"BLOAD CONUIR.OBJ"
PRINT "What is your name ? ";
IS$="Fred"

&INPUT(ISS)

Language Interfaces

Page 55

If the application program is to provide the user with a small visible

field:

PRINT CHR$(4);"brun release': REM release memory buffers

PRINT "pr#3"

REM load & initialize Console Driver & UIR
Al =9 : A2 =9

PRINT CHRS$(4);"brun rboot"

Al = USR(P),"conuir.rel”": REM load Console Driver & UIR
A2 = USR(P),"condamp.rel": REM load ampersand interface

CALL A2
&STCDADR (A1)

DIM IBZ%(82)

&GETINFO(IBZ)

IB%Z(1)=20:REM width
IBZ(2)=".":REM £ill char
&SETINFO(IBZ)

PRINT "What is your name ? ";
IS$="Fred"

&INPUT(ISS)

Assembly Language

The Assembly-Language version of the User Input Routine provides a set
of calls similar to ProDOS MLI calls. They provide four functions:

Initializing Input Information

Retrieving Input Informatiom

Setting Input Information

= Calling the User Input Routine

The ASMCON disk contains an absolute binary file named CONUIR.OBJ and a

relocatable file named CONUIR.REL.

CONUIR.OBJ was generated from CONUIR.REL, with the starting address

$40PP. 1If this starting address is not satisfactory for the
application program, use the RELOCATOR program to generate a new

absqlute file that starts at the desired location.

Format of the Information Block

Here is the Assembler equivalent of the Information Block:

maxterms equ 20 yMaximum number of terminators

Page 56

InputInfo
5

5

width
fillchar
mousefill

cursor

control
beep

immediate

entrytype

bordch

.
b
.
’

exittype

lastevent
lastch
lastmod
nchars

charlist
modlist

termlist

equ

db
db
db

db

db

db

db

db

db

db

db
db
db
db

ds
ds

ds

Chapter 2: Standard User Input Routine

General Information
) ;Width of the field on-the screen
nn 3Fill character
) ;P-use "fillchar'" as fill character
;l-use MouseText ghost underline
] jcurrent cursor being used
;P—=insert cursor
; l=-replacement cursor
) ;P=Control chars will be ignored
; l=Control chars allowed as input
) ;P-errors will not be beeped
; l=errors will be beeped
9 ;#—-calling routine gets control after the

; complete input is keyed in by user
; l=calling routine gets control after each
; printable character is input

] ;Indicates type of entry into routine
;@-initial entry
;l1=interrupt re-entry
;2=~immediate re-entry

) ;char to blink outside of field

Termination Information

) sIndicates which termination condition
y occurred

;#-not terminated yet

;not P-index into terminating char list
;last event type (not used)

;character user keyed in

; keypress modifier

;Number of terminator chars currently

; defined

oo s

;The next 3 items define what keystrokes
3 will terminate or interrupt the routine.

maxterms ;Chars which will terminate input
maxterms ;Modifiers for each char in''charlist"

; d=none

; 1-Open Apple

; 2=Solid Apple

;3=Either Open or Solid Apple
maxterms ;Termination types for each char in

; '"'charlist"
;P-terminate input
; l=interrupt input

Language Interfaces . ' Page 57

;s Internal Information

originx db i} ;X coordinate of start of field

originy db 9. ;¥ coordinate of start of field

Cursorx db] 3X coordinate of cursor in field

cursory db) 3y coordinate of cursor in field

cursorpos db) ;position of cursor in field (l..width)
inputlength db) ;length of Input String (incl invisib part)
slowblink dw) ;yslow blink rate

fastblink dw)] ;fast blink rate

Format of Calls

The UIR has only one entry for all the functions. It is located at the
beginning of the code. A call is made as follows:

JSR INPUT

DB COMMAND
DW PARAMPTR
BNE ERROR

The label INPUT is the starting address of the UIR. The programmer will
determine this location when the routine is relocated in memory. In the
application program, there should be a statement of the form:

INPUT EQU nnnn
where nnnn is the starting address of the UIR.

COMMAND is a number that specifies which function is requested.
PARAMPTR is a two-byte pointer to a parameter list.

When the UIR returns to the calling program, the carry flag will be set
if an error has been detected. The only possible error that is detected
by the UIR is an illegal command error (3). This occurs if COMMAND is
not one of the available function numbers.

The calling program should check the carry flag (as in the BNE

instruction above) and report the appropriate error. The actual error
type is passed to the calling program in the A-register.

Initializing Input Information

This call initializes the Information Block to its default values
(defined earlier in this chapter). Its format is:

Page 58 Chapter 2: Standard User Input Routine

JSR INPUT
DB 19 ;command number for Initialize
DW)

Retrieving Input Information

This call retrieves the current contents of the Input Information Block.
Its format is:

JSR INPUT

DB 11 ; command number for Get Input Information
DW INPUTINFO

where INPUTINFO is the address of a buffer where the contents of the
Information Block is to be moved. The format of the Information Block
is defined earlier in this chapter.

Setting Input Informationm

This call sets the Input Information Block to values in the specified
buffer. Its format is:

JSR INPUT
DB 12 ; command number for Set Input Information
DW INPUTINFO

where INPUTINFO is the address of the buffer.

Calling the User Input Routine

This call performs the actual input. Its format:

JSR INPUT
DB 13 ;command number for Input
DW PARAM

where the format of PARAM is:
PARAM DW STRING
DB maxlength
STRING STR "This is the default"

Upon return from this call, the A-register will contain the exittype.

Language Interfaces : ' Page 59

Assembly-Language Examples

The demonstration program (STARTUP) on the assembly-language disk can be
used to try out many of the UIR's features.

In the simplest use of the UIR, the application program displays a
question on the screen and then calls the UIR for the answer. Here is a
program segment that illustrates this:

QUESTION STR "What is your name ? "
ANSWER STR ""
DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-1
PARAM DW ANSWER
DB MAXLEN

LI IY

; display question

LDY #9
LOOP LDA QUESTION+1,Y
JSR $FDED ;display the char
INY
CPY QUESTION
BCC LooP

; get answer

JSR INPUT
DB 13
DW PARAM

If the application program is to provide a default name:

QUESTION STR "What is your name ? "
ANSWER STR "Fred"
DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-~-1]
PARAM DW ANSWER
DB MAXLEN

H display question

LDY #9
LOOP LDA QUESTION+1,Y
JSR $FDED ;ydisplay the char
INY
CPY QUESTION
BCC LOOP

Page 60 ‘ ‘ Chapter 2: Standard User Input Routine

get answer

“e we weo

JSR INPUT
DB 13
DW PARAM

If the application program is to provide the user with a small visible
field: ‘

QUESTION STR "What is your name ? "
ANSWER STR "Fred" -
DS 81-*+ANSWER
MAXLEN EQU *-ANSWER~-1]
PARAM DW ANSWER
DB MAXLEN
INPUTINFO DS 84

; get current Information Block
JSR INPUT

DS 11
DW INPUTINFO

H change values in Information Block

LDA #89

“ STA INPUTINFO ;width
LDA #"."
STA INPUTINFO+1 ;£illchar

; set Information Block

JSR INPUT
DS 12
DW INPUTINFO

; display question

LDY #9
LOOP LDA QUESTION+1,Y
JSR S$FDED ydisplay the char
INY
CPY QUESTION
BCC LOOP

; get answer

JSR INPUT

Language Interfaces ‘, Page 61

DB 13
DW PARAM

